Diagonal Two-Particle Density Matrix
PDM Definition
One-particle density matrix
\[\langle a_{p\sigma}^\dagger a_{q\tau} \rangle\]
Two-particle density matrix
\[\langle a_{p\sigma}^\dagger a_{q\tau}^\dagger a_{r\gamma} a_{s\lambda} \rangle\]
Spatial one-particle density matrix
\[E_{pq} \equiv \sum_{\sigma} \langle a_{p\sigma}^\dagger a_{q\sigma} \rangle\]
Spatial two-particle density matrix
\[e_{pqrs} \equiv \sum_{\sigma\tau} \langle a_{p\sigma}^\dagger a_{q\tau}^\dagger a_{r\tau} a_{s\sigma} \rangle\]
Spatial two-spin density matrix
\[s_{pqrs} \equiv \sum_{\sigma\tau} (-1)^{1+\delta_{\sigma\tau}}
\langle a_{p\sigma}^\dagger a_{q\tau}^\dagger a_{r\tau} a_{s\sigma} \rangle\]
where
\[\begin{split}(-1)^{1+\delta_{\sigma\tau}} = \begin{cases} 1 & \sigma = \tau \\ -1 & \sigma \neq \tau \end{cases}\end{split}\]
NPC Definition
Number of particle correlation (pure spin)
\[\langle n_{p\sigma} n_{q\tau} \rangle = \langle a_{p\sigma}^\dagger a_{p\sigma} a_{q\tau}^\dagger a_{q\tau} \rangle\]
Number of particle correlation (mixed spin)
\[\langle a_{p\sigma}^\dagger a_{p\tau} a_{q\tau}^\dagger a_{q\sigma} \rangle\]
Spin/Charge Correlation
Spin correlation
\[S_{pq} = \langle (n_{p\alpha} - n_{p\beta}) (n_{q\alpha} - n_{q\beta}) \rangle
= \langle n_{p\alpha} n_{q\alpha} \rangle - \langle n_{p\alpha} n_{q\beta} \rangle
- \langle n_{p\beta} n_{q\alpha} \rangle + \langle n_{p\beta} n_{q\beta} \rangle
= \sum_{\sigma\tau} (-1)^{1+\delta_{\sigma\tau}} \langle n_{p\sigma} n_{q\tau} \rangle\]
Charge correlation
\[C_{pq} = \langle (n_{p\alpha} + n_{p\beta}) (n_{q\alpha} + n_{q\beta}) \rangle
= \langle n_{p\alpha} n_{q\alpha} \rangle + \langle n_{p\alpha} n_{q\beta} \rangle
+ \langle n_{p\beta} n_{q\alpha} \rangle + \langle n_{p\beta} n_{q\beta} \rangle
= \sum_{\sigma\tau} \langle n_{p\sigma} n_{q\tau} \rangle\]
Diagonal Spatial Two-Particle Density Matrix (Pure Spin)
Using anticommutation relation
\[a_{q\tau}^\dagger a_{p\sigma} = - a_{p\sigma} a_{q\tau}^\dagger + \delta_{pq}\delta_{\sigma\tau}\]
We have
\[\langle a_{p\sigma}^\dagger a_{q\tau}^\dagger a_{q\tau} a_{p\sigma} \rangle
= -\langle a_{p\sigma}^\dagger a_{q\tau}^\dagger a_{p\sigma} a_{q\tau} \rangle
= \langle a_{p\sigma}^\dagger a_{p\sigma} a_{q\tau}^\dagger a_{q\tau} \rangle
- \delta_{pq} \delta_{\sigma\tau} \langle a_{p\sigma}^\dagger a_{q\tau} \rangle\]
Then
\[\begin{split}e_{pqqp} \equiv&\ \sum_{\sigma\tau} \langle a_{p\sigma}^\dagger a_{q\tau}^\dagger a_{q\tau} a_{p\sigma} \rangle
= -\sum_{\sigma\tau} \langle a_{p\sigma}^\dagger a_{q\tau}^\dagger a_{p\sigma} a_{q\tau} \rangle
= \sum_{\sigma\tau} \langle a_{p\sigma}^\dagger a_{p\sigma} a_{q\tau}^\dagger a_{q\tau} \rangle
- \delta_{pq} \sum_{\sigma} \langle a_{p\sigma}^\dagger a_{q\sigma} \rangle \\
=&\ \sum_{\sigma\tau} \langle n_{p\sigma} n_{q\tau} \rangle
- \delta_{pq} \sum_{\sigma} \langle a_{p\sigma}^\dagger a_{q\sigma} \rangle\end{split}\]
Therefore,
\[\boxed{C_{pq} \equiv \sum_{\sigma\tau} \langle n_{p\sigma} n_{q\tau} \rangle = e_{pqqp} + \delta_{pq} E_{pq}}\]
Similarly,
\[\begin{split}s_{pqqp} \equiv&\ \sum_{\sigma\tau} (-1)^{1+\delta_{\sigma\tau}} \langle a_{p\sigma}^\dagger a_{q\tau}^\dagger a_{q\tau} a_{p\sigma} \rangle
= -\sum_{\sigma\tau} (-1)^{1+\delta_{\sigma\tau}} \langle a_{p\sigma}^\dagger a_{q\tau}^\dagger a_{p\sigma} a_{q\tau} \rangle \\
=&\ \sum_{\sigma\tau} (-1)^{1+\delta_{\sigma\tau}} \langle a_{p\sigma}^\dagger a_{p\sigma} a_{q\tau}^\dagger a_{q\tau} \rangle
- \delta_{pq} \sum_{\sigma} \langle a_{p\sigma}^\dagger a_{q\sigma} \rangle \\
=&\ \sum_{\sigma\tau} (-1)^{1+\delta_{\sigma\tau}} \langle n_{p\sigma} n_{q\tau} \rangle
- \delta_{pq} \sum_{\sigma} \langle a_{p\sigma}^\dagger a_{q\sigma} \rangle\end{split}\]
Therefore,
\[\boxed{S_{pq} \equiv \sum_{\sigma\tau} (-1)^{1+\delta_{\sigma\tau}} \langle n_{p\sigma} n_{q\tau} \rangle
= s_{pqqp} + \delta_{pq} E_{pq} }\]
Diagonal Spatial Two-Particle Density Matrix (Mixed Spin)
Using anticommutation relation
\[a_{q\tau}^\dagger a_{p\tau} = - a_{p\tau} a_{q\tau}^\dagger + \delta_{pq}\]
we have
\[\begin{split}e_{pqpq} \equiv&\ \sum_{\sigma\tau} \langle a_{p\sigma}^\dagger a_{q\tau}^\dagger a_{p\tau} a_{q\sigma} \rangle
= -\sum_{\sigma\tau} \langle a_{p\sigma}^\dagger a_{p\tau} a_{q\tau}^\dagger a_{q\sigma} \rangle
+ \delta_{pq} \sum_{\sigma\tau} \langle a_{p\sigma}^\dagger a_{q\sigma} \rangle \\
=&\ -\sum_{\sigma\tau} \langle a_{p\sigma}^\dagger a_{p\tau} a_{q\tau}^\dagger a_{q\sigma} \rangle
+ 2\delta_{pq} \sum_{\sigma} \langle a_{p\sigma}^\dagger a_{q\sigma} \rangle \\\end{split}\]
Therefore,
\[\boxed{\sum_{\sigma\tau} \langle a_{p\sigma}^\dagger a_{p\tau} a_{q\tau}^\dagger a_{q\sigma} \rangle
= -e_{pqpq} + 2\delta_{pq} E_{pq}}\]