\[\hat{H} = \hat{H}^{L} \otimes \hat{1}^{R} + \hat{1}^{L} \otimes \hat{H}^{R}
+\Big( \sum_{i\in L} a_i^\dagger \hat{R}_i^{R} + h.c. + \sum_{i\in R} a_i^\dagger \hat{R}_i^{L} + h.c. \Big)
+\frac{1}{2} \Big( \sum_{ik\in L} \hat{A}_{ik}^L \hat{P}_{ik}^{R} + h.c. \Big)
+ \sum_{ij\in L} \hat{B}_{ij}^L \hat{Q}_{ij}^{R}\]
\[\begin{split}\hat{R}_i^{L/R} =&\ \frac{1}{2} \sum_{j\in L/R} t_{ij} a_j + \sum_{jkl\in L/R} v_{ijkl} a_k^\dagger a_l a_j, \\
\hat{A}_{ik} =&\ a_i^\dagger a_k^\dagger, \\
\hat{B}_{ij} =&\ a_i^\dagger a_j, \\
\hat{P}_{ik}^{R} =&\ \sum_{jl\in R} v_{ijkl} a_l a_j, \\
\hat{Q}_{ij}^{R} =&\ \sum_{kl\in R} \big( v_{ijkl} - v_{ilkj} \big) a_k^\dagger a_l\end{split}\]
Note that we need to move all on-site interaction into local Hamiltonian,
so that when construction interaction terms in Hamiltonian,
operators anticommute (without giving extra constant terms).
Derivation
First consider one-electron term. \(ij\) indices have only two possibilities: \(i\) left, \(j\) right,
or \(i\) right, \(j\) left. Index \(i\) must be associated with creation operator. So the second case
is the Hermitian conjugate of the first case. Namely, consider \(\hat{S}_i^{L/R}\) as the one-body part of
\(\hat{R}_i^{L/R}\), we have
\[\begin{split}&\ \Big( \sum_{i\in L} a_i^\dagger \hat{S}_i^{R} + h.c.
+ \sum_{i\in R} a_i^\dagger \hat{S}_i^{L} + h.c. \Big) \\
=&\ \Big( \sum_{i\in L} a_i^\dagger \hat{S}_i^{R} + \sum_{i\in L} \hat{S}_i^{R\dagger} a_i
+ \sum_{i\in R} a_i^\dagger \hat{S}_i^{L} + \sum_{i\in R} \hat{S}_i^{L\dagger} a_i \Big) \\
=&\ \frac{1}{2} \Big( \sum_{i\in L,j\in R} t_{ij} a_i^\dagger a_j + \sum_{i\in L,j\in R} t_{ij}^* a_j^\dagger a_i
+ \sum_{i\in R,j \in L} t_{ij} a_i^\dagger a_j + \sum_{i\in R,j\in L}t_{ij}^* a_j^\dagger a_i \Big)\end{split}\]
Using \(t_{ij}^* = t_{ji}\) and swap the indices \(ij\) we have
\[\begin{split}\cdots =&\ \frac{1}{2} \Big( \sum_{i\in L,j\in R} t_{ij} a_i^\dagger a_j + \sum_{i\in R,j\in L} t_{ij} a_i^\dagger a_j
+ \sum_{i\in R,j \in L} t_{ij} a_i^\dagger a_j + \sum_{i\in L,j\in R}t_{ij} a_i^\dagger a_j \Big) \\
=&\ \sum_{i\in L,j\in R} t_{ij} a_i^\dagger a_j + \sum_{i\in R,j \in L} t_{ij} a_i^\dagger a_j\end{split}\]
Next consider one of \(ijkl\) in left, and three of them in right. These terms are
\[\begin{split}\hat{H}_{1L,3R} =&\
\frac{1}{2}\sum_{i\in L, jkl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2}\sum_{j\in L, ikl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2}\sum_{k\in L, ijl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2}\sum_{l\in L, ijk \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j \\
=&\ \left[
\frac{1}{2}\sum_{i\in L, jkl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2}\sum_{k\in L, ijl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j \right]
+ \frac{1}{2}\sum_{j\in L, ikl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2}\sum_{l\in L, ijk \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j\end{split}\]
where the terms in bracket equal to first and third terms in left-hand-side. Outside the bracket are second, forth
terms.
The conjugate of third term in rhs is second term in rhs
\[\frac{1}{2}\sum_{j\in L, ikl \in R} v_{ijkl}^* a_j^\dagger a_l^\dagger a_k a_i
= \frac{1}{2}\sum_{k\in L, ijl \in R} v_{lkji}^* a_k^\dagger a_i^\dagger a_j a_l
= \frac{1}{2}\sum_{k\in L, ijl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j\]
The conjugate of forth term in rhs is first term in rhs
\[\frac{1}{2}\sum_{l\in L, ijk \in R} v_{ijkl}^* a_j^\dagger a_l^\dagger a_k a_i
= \frac{1}{2}\sum_{i\in L, jkl \in R} v_{lkji}^* a_k^\dagger a_i^\dagger a_j a_l
= \frac{1}{2}\sum_{i\in L, jkl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j\]
Therefore, using \(v_{ijkl} = v_{klij}\)
\[\begin{split}\hat{H}_{1L,3R} =&\ \left[
\frac{1}{2}\sum_{i\in L, jkl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2}\sum_{k\in L, ijl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j \right] + h.c. \\
=&\ \left[
\frac{1}{2}\sum_{i\in L, jkl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2}\sum_{k\in L, ijl \in R} v_{ijkl} a_k^\dagger a_i^\dagger a_j a_l \right] + h.c. \\
=&\ \left[
\frac{1}{2}\sum_{i\in L, jkl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2}\sum_{i\in L, jkl \in R} v_{klij} a_i^\dagger a_k^\dagger a_l a_j \right] + h.c. \\
=&\ \sum_{i\in L, jkl \in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j + h.c. \\
=&\ \sum_{i\in L} a_i^\dagger \sum_{jkl \in R} v_{ijkl} a_k^\dagger a_l a_j + h.c.
= \sum_{i\in L} a_i^\dagger R_i^{R} + h.c.\end{split}\]
Next consider the two creation operators together in left or in together in right. There are two cases.
The second case is the conjugate of the first case, namely,
\[\sum_{ik\in R, jl \in L} a_i^\dagger a_k^\dagger v_{ijkl} a_l a_j
= \sum_{jl\in R, ik \in L} a_j^\dagger a_l^\dagger v_{jilk} a_k a_i
= \sum_{ik \in L, jl\in R} v_{jilk} a_j^\dagger a_l^\dagger a_k a_i
= \sum_{ik \in L, jl\in R} v_{ijkl}^* \Big( a_i^\dagger a_k^\dagger a_l a_j \Big)^\dagger\]
This explains the \(\hat{A}\hat{P}\) term. The last situation is, one creation in left and one creation in right.
Note that when exchange two elementary operators, one creation and one annihilation, one in left and one in right,
they must anticommute.
\[\begin{split}\hat{H}_{2L,2R} =&\
\frac{1}{2} \sum_{il\in L, jk\in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2} \sum_{ij\in L, kl\in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2} \sum_{kl\in L, ij\in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j
+ \frac{1}{2} \sum_{jk\in L, il\in R} v_{ijkl} a_i^\dagger a_k^\dagger a_l a_j \\
=&\
- \frac{1}{2} \sum_{il\in L, jk\in R} v_{ijkl} a_i^\dagger a_l a_k^\dagger a_j
+ \frac{1}{2} \sum_{ij\in L, kl\in R} v_{ijkl} a_i^\dagger a_j a_k^\dagger a_l
+ \frac{1}{2} \sum_{kl\in L, ij\in R} v_{ijkl} a_i^\dagger a_j a_k^\dagger a_l
- \frac{1}{2} \sum_{jk\in L, il\in R} v_{ijkl} a_i^\dagger a_l a_k^\dagger a_j\end{split}\]
First consider the second and third terms
\[\begin{split}&\ \frac{1}{2} \sum_{ij\in L, kl\in R} v_{ijkl} a_i^\dagger a_j a_k^\dagger a_l
+ \frac{1}{2} \sum_{kl\in L, ij\in R} v_{ijkl} a_i^\dagger a_j a_k^\dagger a_l \\
=&\ \frac{1}{2} \sum_{ij\in L, kl\in R} v_{ijkl} a_i^\dagger a_j a_k^\dagger a_l
+ \frac{1}{2} \sum_{kl\in L, ij\in R} v_{ijkl} a_k^\dagger a_l a_i^\dagger a_j \\
=&\ \frac{1}{2} \sum_{ij\in L, kl\in R} v_{ijkl} a_i^\dagger a_j a_k^\dagger a_l
+ \frac{1}{2} \sum_{ij\in L, kl\in R} v_{klij} a_i^\dagger a_j a_k^\dagger a_l \\
=&\ \sum_{ij\in L, kl\in R} v_{ijkl} a_i^\dagger a_j a_k^\dagger a_l
= \sum_{ij\in L} a_i^\dagger a_j \sum_{kl\in R} v_{ijkl} a_k^\dagger a_l
= \sum_{ij\in L} \hat{B}_{ij} \hat{Q}_{ij\prime}^{R}\end{split}\]
For the other two terms,
\[\begin{split}&\ -\frac{1}{2} \sum_{il\in L, jk\in R} v_{ijkl} a_i^\dagger a_l a_k^\dagger a_j
-\frac{1}{2} \sum_{jk\in L, il\in R} v_{ijkl} a_i^\dagger a_l a_k^\dagger a_j \\
=&\ -\frac{1}{2} \sum_{il\in L, jk\in R} v_{ijkl} a_i^\dagger a_l a_k^\dagger a_j
-\frac{1}{2} \sum_{jk\in L, il\in R} v_{ijkl} a_k^\dagger a_j a_i^\dagger a_l \\
=&\ -\frac{1}{2} \sum_{il\in L, jk\in R} v_{ijkl} a_i^\dagger a_l a_k^\dagger a_j
-\frac{1}{2} \sum_{il\in L, jk\in R} v_{klij} a_i^\dagger a_l a_k^\dagger a_j \\
=&\ -\sum_{il\in L, jk\in R} v_{ijkl} a_i^\dagger a_l a_k^\dagger a_j \\
=&\ -\sum_{il\in L} a_i^\dagger a_l \sum_{jk\in R} v_{ijkl} a_k^\dagger a_j
= \sum_{il\in L} \hat{B}_{il} \hat{Q}_{il\prime\prime}^{R}\end{split}\]
Then
\[\hat{Q}_{ij}^{R} = \hat{Q}_{ij\prime}^{R} + \hat{Q}_{ij\prime\prime}^{R}
= \sum_{kl\in R} \big( v_{ijkl} - v_{ilkj} \big) a_k^\dagger a_l\]
Normal/Complementary Partitioning
The above version is used when left block is short in length. Note that all terms should be written in a way that operators
for particles in left block should appear in the left side of operator string, and operators for particles in right block
should appear in the right side of operator string. To write the Hermitian conjugate explicitly, we have
\[\begin{split}\hat{H}^{NC} =&\ \hat{H}^{L} \otimes \hat{1}^{R} + \hat{1}^{L} \otimes \hat{H}^{R} \\
&\ + \sum_{i\in L} \Big( a_i^\dagger \hat{R}_i^{R} - a_i \hat{R}_i^{R\dagger} \Big)
+ \sum_{i\in R} \Big( \hat{R}_i^{L\dagger} a_i - \hat{R}_i^{L} a_i^\dagger \Big) \\
&\ + \frac{1}{2} \sum_{ik\in L} \Big( \hat{A}_{ik} \hat{P}_{ik}^{R} +
\hat{A}_{ik}^{\dagger} \hat{P}_{ik}^{R\dagger} \Big)
+ \sum_{ij\in L} \hat{B}_{ij} \hat{Q}_{ij}^{R}\end{split}\]
Note that no minus sign for Hermitian conjugate terms with \(A, P\) because these are not Fermion operators.
With this normal/complementary partitioning, the operators required in left block are
\[\big\{ \hat{H}^{L}, \hat{1}^L, a_i^\dagger, a_i, \hat{R}_k^{L\dagger},
\hat{R}_k^{L}, \hat{A}_{ij}, \hat{A}_{ij}^{\dagger}, \hat{B}_{ij} \big\} \quad (i,j\in L, \ k \in R)\]
The operators required in right block are
\[\big\{ \hat{1}^{R}, \hat{H}^R, \hat{R}_i^{R}, \hat{R}_i^{R\dagger},
a_k, a_k^\dagger, \hat{P}_{ij}^R, \hat{P}_{ij}^{R\dagger}, \hat{Q}_{ij}^R \big\} \quad (i,j\in L, \ k \in R)\]
Assuming that there are \(K\) sites in total, and \(K_L/K_R\) sites in left/right block (optimally, \(K_L \le K_R\)),
the total number of operators (and also the number of terms in Hamiltonian with partition)
in left or right block is
\[N_{NC} = 1 + 1 + 2 K_L + 2 K_R + 2 K_L^2 + K_L^2 = 3K_L^2 + 2K + 2\]
Complementary/Normal Partitioning
\[\begin{split}\hat{H}^{CN} =&\ \hat{H}^{L} \otimes \hat{1}^{R} + \hat{1}^{L} \otimes \hat{H}^{R}
+ \sum_{i\in L} \Big( a_i^\dagger \hat{R}_i^{R} - a_i \hat{R}_i^{R\dagger} \Big)
+ \sum_{i\in R} \Big( \hat{R}_i^{L\dagger} a_i - \hat{R}_i^{L} a_i^\dagger \Big) \\
&\ +\frac{1}{2} \sum_{jl\in R} \Big( \hat{P}_{jl}^{L} \hat{A}_{jl} +
\hat{P}_{jl}^{L\dagger} \hat{A}_{jl}^{\dagger} \Big)
+ \sum_{kl\in R} \hat{Q}_{kl}^{L} \hat{B}_{kl}\end{split}\]
Now the operators required in left block are
\[\big\{ \hat{H}^L, \hat{1}^{L}, a_i^\dagger, a_i, \hat{R}_k^{L\dagger},
\hat{R}_k^{L}, \hat{P}_{kl}^L, \hat{P}_{kl}^{L\dagger},
\hat{Q}_{kl}^L \big\}\quad (k,l\in R, \ i \in L)\]
The operators required in right block are
\[\big\{ \hat{1}^R, \hat{H}^{R}, \hat{R}_i^{R}, \hat{R}_i^{R\dagger},
a_k, a_k^\dagger, \hat{A}_{kl}, \hat{A}_{kl}^{\dagger}, \hat{B}_{kl} \big\}\quad (k,l\in R, \ i \in L)\]
The total number of operators (and also the number of terms in Hamiltonian with partition)
in left or right block is
\[N_{CN} = 1 + 1 + 2K_R + 2K_L + 2K_R^2 + K_R^2 = 3K_R^2 + 2K + 2\]